Scaling-Up Quantum Heat Engines Efficiently via Shortcuts to Adiabaticity

نویسندگان

  • Mathieu Beau
  • Juan Jaramillo
  • Adolfo del Campo
چکیده

The finite-time operation of a quantum heat engine that uses a single particle as a working medium generally increases the output power at the expense of inducing friction that lowers the cycle efficiency. We propose to scale up a quantum heat engine utilizing a many-particle working medium in combination with the use of shortcuts to adiabaticity to boost the nonadiabatic performance by eliminating quantum friction and reducing the cycle time. To this end, we first analyze the finite-time thermodynamics of a quantum Otto cycle implemented with a quantum fluid confined in a time-dependent harmonic trap. We show that nonadiabatic effects can be controlled and tailored to match the adiabatic performance using a variety of shortcuts to adiabaticity. As a result, the nonadiabatic dynamics of the scaled-up many-particle quantum heat engine exhibits no friction, and the cycle can be run at maximum efficiency with a tunable output power. We demonstrate our results with a working medium consisting of particles with inverse-square pairwise interactions that includes non-interacting and hard-core bosons as limiting cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosting work characteristics and overall heat-engine performance via shortcuts to adiabaticity: quantum and classical systems.

Under a general framework, shortcuts to adiabatic processes are shown to be possible in classical systems. We study the distribution function of the work done on a small system initially prepared at thermal equilibrium. We find that the work fluctuations can be significantly reduced via shortcuts to adiabatic processes. For example, in the classical case, probabilities of having very large or a...

متن کامل

Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space

The application of adiabatic protocols in quantum technologies is severely limited by environmental sources of noise and decoherence. Shortcuts to adiabaticity by counterdiabatic driving constitute a powerful alternative that speed up time-evolution while mimicking adiabatic dynamics. Here we report the experimental implementation of counterdiabatic driving in a continuous variable system, a sh...

متن کامل

Shortcuts to adiabaticity in non-Hermitian quantum systems without rotating-wave approximation.

The technique of shortcuts to adiabaticity (STA) has attracted broad attention due to their possible applications in quantum information processing and quantum control. However, most studies published so far have been only focused on Hermitian systems under the rotating-wave approximation (RWA). In this paper, we propose a modified shortcuts to adiabaticity technique to realize population trans...

متن کامل

More bang for your buck: Super-adiabatic quantum engines

The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, ...

متن کامل

Stochastic heat engine with the consideration of inertial effects and shortcuts to adiabaticity.

When a Brownian particle in contact with a heat bath at a constant temperature is controlled by a time-dependent harmonic potential, its distribution function can be rigorously derived from the Kramers equation with the consideration of the inertial effect of the Brownian particle. Based on this rigorous solution and the concept of shortcuts to adiabaticity, we construct a stochastic heat engin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016